The Parkview Drive Bridge over Murder Creek

The bridge pictured is the Parkview Drive Bridge which crosses the fabled Murder Creek near the Village of Akron, NY. The original bridge built in 1933 had fallen into disrepair and was closed in 2003.

In May of 2009, what was left of the original superstructure was removed and replaced with a prestressed slab unit superstructure with a composite deck.

At the same time the existing piers were rehabilitated and widened in anticipation of the newly designed Precast Fascia Panels which duplicated the look of the original structure.

There are 5 individual Architectural Precast Panels on each side of the bridge each with an individual weight of approximately 32,000 lbs. The face of each panel received a “Coarse Sandblast” surface finish by using elastomeric form liners. The Texas Barrier and the CIP Pilasters were added at the same time. The bridge replacement project cost approximately $1.7 million, 80% of which was paid for with federal dollars.

The panels were constructed using galvanized Reinforcement and attached to the new prestressed bridge structure using Galvanized Dowels and threaded couplers.

In May of 2011 this project won “Honorable Mention” in the Annual Bridge Design competition sponsored by the Western NY Chapter of the Association of Bridge Construction and Design.
Emulation Design Provides Robust Structure in 17 Days

The town of Enfield, Conn., completed construction of their first totally precast concrete bridge structure with the South Maple Street Bridge over the Scantic River. The existing bridge was built in 1925 and had been rehabilitated and strengthened several times but had met its life expectancy. It was a 66-ft-long single span. The replacement bridge on the same 10-degree skew alignment is an 82-ft-long, 45-ft-wide, single-span structure that carries two, 11-ft-wide traffic lanes, two 6-ft sidewalks, and two 4-ft-wide bicycle lanes. The detour for the project was relatively cumbersome and the town wanted the bridge closed for the shortest possible duration. The town agreed with its engineering consultant to replace the bridge using an accelerated bridge construction (ABC) concept.

The consultant developed a conceptual ABC plan and served as the owner’s representative during construction. On the basis of the conceptual plans, the contractor was selected to finish the design, develop shop drawings for the ABC solution, and plans for the utilities and approach work. The contractor selected the precaster, who in turn selected the precast design engineer to finalize the design and prepare shop drawings for the production of the precast concrete.

The ABC Concept

The new bridge was assembled from 71 precast concrete components comprising 42 unique elements each of which required special detailing. The precast concrete elements included:

- **Foundation**—19 footing blocks, 3 ft 0 in. thick and typically 13 ft long by 8 to 10 ft wide. Fourteen required skewed edges. The blocks incorporated threaded jacks to level them to grade after setting. Each had three, but up to six, 2-in.-diameter holes through which to inject grout after leveling.

- **Abutment Walls**—10 abutment panels 3 ft 1 in. thick. Panels were either 12 ft 9 in. or 14 ft 8 in. tall and varied from 5 ft 10 in. to 10 ft 8 in. wide.

- **Wingwalls**—13 pieces that varied in thickness from 3 ft 10 in. at the bottom to 1 ft 6 in. at the top. A typical panel was 22 ft tall by 10 ft wide. These panels were cast with an ashlar stone pattern on their exposed face using a formliner. Tops of the panels contained bolts and extended reinforcement for attachment of rail posts and cast-in-place concrete end blocks.

- **Bridge Seat Beams**—two pieces 47 ft 6 in. long and 3 ft 7 in. wide. One was set on the top of each abutment wall to tie all

The precast concrete footings were set and aligned with plywood templates to ensure fit-up of the walls over the dowel bars.

The wing walls were 22 ft tall and tapered in thickness from 3 ft 10 in. to 1 ft 6 in.

Precast abutments and wingwalls were placed and braced. Vertical form boards are shown clamped over the joints in two locations to grout the shear keys full. Next, the bridge seat beam will be placed on the abutment walls.

The final adjacent box beam was set on the precast concrete beam seat after which the cheek walls were set. Epoxy-coated reinforcement was provided in the tops of the box beams to secure the curbs and sidewalks.
Emulation Design (continued from page 1)

abutment panels together and provide a seat for the superstructure box beams. The beams tapered in depth from 2 ft 5\(\frac{3}{4}\) in. at their centerline to 2 ft 0 in. at the ends. This provided a 1\(\frac{1}{4}\) in./ft crown slope for the bearings of the box beams and thus the roadway surface. The beams were cast with an added 4-in. high by 5-in. wide continuous length lip that extends down in front of the abutment panels to hide the horizontal joint.

- Precast, prestressed concrete adjacent box beams—11 beams 48 in. wide, 33 in. deep and 83 ft 6 in. long. They were prestressed with 34 straight, 1\(\frac{1}{2}\)-in.-diameter strands, eight of which were debonded for a length of 4 ft 0 in. at the ends. The design compressive strength of the concrete was 6500 psi at 28 days and 5000 psi at transfer.
- Cheek walls—four pieces 4 ft 5 in. tall by 3 ft 6 in. by 2 ft 4 in. that closed the space above the bridge seat beams and alongside each edge box beam.
- Pavement approach slabs—12 slabs approximately 6 ft 10\(\frac{3}{4}\) in. wide by 16 ft 3 in. long. Each slab is 1 ft 3 in. thick at its approach end and is thickened to 2 ft 11 in. over the last 4 ft 3 in. where it abuts the end of the box beams and sits on the bridge seat beam. All slabs were skewed.

Connections Plan

The connections of the precast concrete components in the substructure were detailed structurally using emulation design. Emulative detailing provides connection systems in a precast concrete structure so that its structural performance is equivalent to that of a conventionally designed, cast-in-place, monolithic concrete structure (ACI 550.1R).

For the abutment panels, bars extended from the footing blocks and were inserted in dowel bar splice sleeves that were cast in the panels. There were No. 5 bars spaced at 12 in. in the back row and No. 6 at 6 in. in the front row. The abutment panels were set in a 6-in.-deep keyway cast into the top of the footing blocks. At the top of the abutment panels, the same configuration of dowel bars extended from the tops of the panels into dowel bar splice sleeves cast into the bottom of the bridge seat beams.

These tied the tops of the abutment walls together. The same kind of connection was made between the footing and wingwalls. There, No. 6 bars spaced at 6 in. were placed in the front row and No. 8 bars spaced at 6 in. in the back row. The bottoms of these panels were also set into 6-in.-deep keyways.

After bracing the panels, the splice sleeves were injected full with 10,000 psi compressive strength grout through fill tubes cast into the panels for that purpose. A total of 426 dowel bar splices were used in the bridge. Finally, horizontal joints between components were filled with high-strength grout. Vertical joints had keyways cast into their mating surfaces. These were also filled with grout.

The precast concrete approach slabs were set on the bridge seat beams with a 1-in.-wide joint to the ends of the box beams. Holes 2 by 4 in. received dowel bars from the top of the seat beams and were grouted full.

The box beams were set on elastomeric pads. They were connected transversely with two, 1\(\frac{1}{2}\)-in.-diameter prestressing strands located at each end and at quarter points along the span.

The structure was erected in just 17 days. The project did not require any replacement or jobsite modification of any precast component. This was considered a testament to what the contractor, the engineer, and precast fabricator were able to accomplish through their team effort. The project was considered a success by all involved due to the coordination and detailed planning. The town of Enfield was very pleased with the schedule and appearance of their new bridge. The South Maple Street Bridge project was Connecticut’s first totally precast bridge.

Welcome to PCANY’s Newest Professional Member, a Long-Time Friend of the Precast Industry

Arthur Palmer, Senior Construction Manager, M+W Group, 603 Hudson River Road P.O. Box 248, Waterford, NY 12188-0248

ph: (518) 235-3647

cell: (518) 951-0119

e-mail: Arthur.Palmer@MWGroup.net

website: www.mwgroup.net

ENGINEERING NEWS RECORD TOP 500 DESIGN FIRMS

Heartfelt congratulations to our eleven Professional Member firms recognized in the April 23, 2012 ENR issue in the following categories:
The Top 20 Design Firms by Sector
Transportation: AECOM Technology Corp, CDM Smith
Hazardous Waste: AECOM Technology Corp, CDM Smith
Water: CDM Smith
Sewer and Waste: CDM Smith

Manufacturing: CHA

The Top 50 Designers in International Markets
AECOM Technology Corp, CDM Smith

The Top 50 Pure Designers
AECOM Technology Corp, Greenman-Pedersen, Inc, Vanasse Hangen Brustlin Inc, Simpson Gumpertz & Heger, Inc

And On The Top 500 List

AECOM Technology Corp, CDM Smith, Greenman-Pedersen Inc, Vanasse Hangen Brustlin Inc, CHA, C & S Cos, Simpson Gumpertz & Heger Inc, Bergmann Associates Inc PA, Clark Patterson Lee, Barton & Loguidice PC, Labelia Associates PC

EXECUTIVE DIRECTOR: Carl Buchman, 585-249-9564

IMMEDIATE PAST PRESIDENT: David Wan, Oldcastle Precast

VICE-PRESIDENT: Mike Weigand, J.P. Carrara & Sons

SECRETARY: Position Currently Vacant

TREASURER: Position Currently Vacant

PRECAST CONCRETE ASSOCIATION OF NEW YORK

May 2012 MONTHLY NEWSLETTER