A new concept for constructing precast concrete parking structures was conceived for this project. Precast concrete walls ("stack walls") were used for the first time, incorporating haunches to support the sloping ramp floor on one side and the horizontal floor on the opposite side. After this project, many parking structures were designed using this notion, with either solid walls or with punched openings, commonly called "lite walls".

Baylor Hospital Parking Garage, Dallas 1974

A new concept for constructing precast concrete parking structures was conceived for this project. Precast concrete walls ("stack walls") were used for the first time, incorporating haunches to support the sloping ramp floor on one side and the horizontal floor on the opposite side. After this project, many parking structures were designed using this notion, with either solid walls or with punched openings, commonly called "lite walls".

PCI’s 50 Most Significant

As noted almost a year ago, to celebrate the 50th Anniversary of the Precast/Prestressed Concrete Institute, the organization selected the 50 most significant projects using precast, concrete components. Since this month’s focus was scheduled to be parking garages, let’s look back at some structures from that retrospective. We’ve come a long way in 50 years!

Beverly Hills Hilton Parking Structure, 1961

This five-story, 400 car parking structure featured a unique, prestressed concrete structure for its day. Long spans eliminated columns in parking areas while lightweight aggregates minimized seismic and gravity loading. Durability was insured by using 6,500 psi concrete. The result was an open, airy design that maximized parking layout.

PCANY / ABCD BRIDGE DESIGN WORKSHOP

May 19, 2005 Batavia, NY

Similar to the half day workshop held February 23 in Albany, this expanded, full day workshop on numerous aspects of bridge design, bridge types, and design tools offers 7 PDH for engineers. Announcement details and registration form included with this newsletter.

Credit and thanks for all photos and text relating to the PCI’s 50 Most Significant Projects go to the Precast/Prestressed Concrete Institute, Chicago, Illinois. All 50 projects may be found on their website, www.pci.org.
Sky Harbor International Airport
Phoenix 1965 – 2000

One of the busiest airports in the country, processing 35 million passengers per year, this facility also is the fifth fastest-growing in the U.S. To maintain the capabilities to handle the growing Sun Belt area’s needs, the airport has continued to build and has used structural and architectural precast concrete components in more than 35 separate projects.

This work began with Terminal #2 with some structural precast components. The terminal later was remodeled to project an image more complementary to the terminals constructed later.

Precast began to dominate the design with the construction of Terminals #3 and #4, as designers wanted to use a material that could limit movement caused by the desert’s wide temperature fluctuations. The terminals feature precast concrete floor and roof units and precast wall panels. Perimeter beams on these structures consist of precast structural components, which were completed with an architectural finish. The wall panels were finished with an integral color while offering a low-maintenance, durable finish. Several additional parking structures, cargo facilities, bridges and other support structures feature precast concrete as well.

Northwest Airlines Midfield Terminal Parking Structure, Detroit, 2001

This 10-level, all precast concrete parking structure contains parking for 11,600 vehicles, making it the world’s largest parking facility ever built at one time. Containing 3.86 million square feet, it includes state of the art baggage handling equipment as well as some office space. Specifying precast concrete for the structure was estimated to have saved $15 million compared to the cast-in-place alternative. Total cost of the project was about $125 million. Nearly 5000 pretopped double tees were needed to complete the massive project, with five precasters using seven plants to produce components. Two cast-in-place double-helix ramps, located at each end of the structure, along with eight interior express ramps, move cars through the vertical levels quickly. The project was completed on a modified design-build process, with work taking only 17 months from contract award to completion.

The massive size and complexity of the project, completed in such a short time period, have made it notable to engineering firms everywhere. It is expected that the design will be emulated at other major airports to make more effective use of ground space.
Blue Cross-Blue Shield Parking Structure North Haven 1989

This 1400 car facility was a key component in a phased development plan that required the parking structure to blend with existing and other planned buildings on the site while offering functional efficiency. To achieve these goals, designers created a lateral-load resisting system that featured a combination of reinforced precast concrete shear walls, precast fixed-based columns and precast prestressed girders.

The design features two symmetrical structures connected by two flat cross-overs with a courtyard between. The 3 supported levels feature a minimum 12’ floor to ceiling height and 30’x62’ bays. To provide the necessary lateral expansion and contraction, designers separated the two facilities into three sections, using joints and stabilizing each section with a reinforced shear wall. This jointing pattern was created with double columns in the parking decks and slide bearings at the crossovers.

Rock Island Parking Structure
Rock Island, Ill

This 3 level parking deck features four bays With 59’ clear spans that provide column-free space for parking. The perimeter of the structure was kept level, while the central 2 bays slope in the same direction, permitting one way traffic with angled parking. The outstanding factor in its design was the use of Vierendeel trusses to provide a distinctive look and structural efficiency. Eight foot wide, 24 inch deep precast, prestressed double tees were used for the floors, with 6’ high precast “L” beams used at sloping floors and inverted tee beams measuring 2’3” used at cross-overs. The Vierendeel trusses, 16’ wide and 11’10” tall, span 32’ between the columns. Bottom and top chords that were 16” wide and 22” deep support the double tees at the second level and roof, respectively. Precast spandrels around the perimeter of the structure act as guardrails. The trusses were specified because they could carry two floors, halving the number of perimeter beams. Supporting the double tees on top and bottom chords without any eccentricity as would happen in a conventional single-ledge beam, eliminated the need for extra reinforcement and special connections. They also provided a distinctive look that fit with the owner’s goals.

Calendar of Coming Events:

<table>
<thead>
<tr>
<th>Date</th>
<th>Event Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>April 5-9</td>
<td>PCI Committee Days, Chicago, IL</td>
</tr>
<tr>
<td>April 17-20</td>
<td>ACI Spring Convention, New York, NY</td>
</tr>
<tr>
<td>April 20-24</td>
<td>ASCE Structures Congress, New York, NY</td>
</tr>
<tr>
<td>May 5-6</td>
<td>ACI Certification Program, Troy, NY</td>
</tr>
<tr>
<td>May 16-18</td>
<td>PCI QC Levels I/II, Nashville, TN</td>
</tr>
<tr>
<td>May 19</td>
<td>Bridge Design Workshop, Batavia</td>
</tr>
<tr>
<td>Sept. 23-26</td>
<td>NPCA IOC (Industry Outlook Conference), Sarasota, FL</td>
</tr>
</tbody>
</table>

Visit www.pcany.org for more information on:
- precast concrete products and their application
- precast concrete producers with links to their websites
- precast concrete association of New York, PCANY
Producer Member Companies:
APCO Precast, Middle Island, NY 11953
A & R Conc Specialties, New Windsor, NY 12550
Bayside Conc Prod, Cape Charles, VA 23321
Binghamton Precast, Binghamton, NY 13901
Carra & Sons, Middlebury, VT 05753
Coastal Pipeline Products, Calverton, NY 11933
Concrete Building Supply, Plattsburgh, NY 12901
William E. Dailey, Shaftsbury, VT 05262
The Fort Miller Co, Schuyler, NY 12871
Hanson Pipe and Products, Pottstown, PA 19464
Jefferson Concrete, Watertown, NY 13601
Kistner Conc Products, East Pembroke, NY 14056
Newcrete Products, Parsippany, NJ 07054
Oldcastle Precast, South Bethlehem, NY 12161
Riefer Concrete Products, Hamburg, NY 14075
Roman Stone Const Co, Bay Shore, NY 11706
Rotondo Precast, Avon, CT 06001
Schuykill Products, Cresona, PA 17929
Sunnycrest Inc. Auburn, NY 13021
Unistress Corp., Pittsford, NY 14521
LC Whittford Co., Wellsville, NY 14895

Associate Member Companies:
A-Lok Products, Tujitown, PA 19077
Amcrete Products, Newburgh, NY 12550
Concrete Sealants, Royersford, PA 19468
Crestar Chemical Co, Weston, CT 06883
Dayton Richmond Corp, Collinsville, CT 06022
degussa Construction Chemicals, Cleveland, OH 44122
Eastern States Steel, Upper Saddle Rv, NJ 07458
Engineered Wire Products, Upper Sandusky, OH 43351
Eucild Chemical Co, Saratoga Springs, NY 12866
WR Grace. Old Chatham, NY 12136
H & H Hulls, Hudson, NY 12334
Heiser Industries, Tualatin, OR 97062
O W Hubbell & Sons, New York Mills, NY 13417
Polytek, Yatesville, CT 06492
Press Seal Gasket Corp, Boxford, MA 01921
Jepco Sales, Royersford, PA 19468
JVI Inc, Pittsfield, MA 01201
NPC Inc, Milford, NH 03055
Olichem Inc, NH Marrimack, NH 03054
A L Patterson, Fallston, PA 19054
Rebar Systems, Cottu, MA 02653
Ska Corporation, Fairless Hills, PA 19030
Spillman Company, Columbus, OH 43207
Splice Sleeve N A, Bonita Springs, FL 34134
Stelcrete Industries, Niagara Falls, Ont L 2E 6V6
Syracuse Casings Sales Corp, Cicero, NY 13039
USF Fabrication, Durham, CT 06422

Septic Tank Producer Companies:
Burnett Concrete Products, Woxoll, NY 14590
Butts Concrete Products, Massillon, OH 44642
Early Precast Co, Brookfield, CT 06804
Grimm Build Materials, Green Island, NY 12149
Guardian Brick, Schenectady, NY 12308
Hoye's Concrete Products, Rome, NY 13440
Keeler Vault, Hudson, NY 12534
Oneonta Block, Oneonta, NY 13820
R Di, Inc Champlain, NY 12919
Woodard's Concrete Products, Bulville, NY 10915
Zieser Wilbert Vault, Elmira, NY 14904

Professional Member Firms:
Albatre Engineers, Buffalo, NY 14225
Advance Testing, Stockbridge, MA 01266
Bartol & Loguidice, Syracuse, NY 13220
Bay Saver, Mount Ayr, MI 48062
Bergmann Associates, Rochester, NY 14614
A L Blades, Hornell, NY 14843
Clough Harbour & Assoc, Albany, NY 12205
Con/Span Bridge Systems, Dayton, OH 45420
John S Deerkoski & Assoc, Warwick, NY 10990
Linden Engineering, Binghamton, NY 13901
DiDonato Associates, Buffalo, NY 14224
FRA Engineering, Henrietta, NY 14447
Greenman-Pederson Inc, Albany, NY 12205
Hunt Engineers & Architects, Conning, NY 14830
LaBella Associates PC, Rochester, NY 14614
LEAP Associates, Tampa, FL 33607
Maser Consulting, West Nyack, NY 10994
McFarland-Johnson, Inc Binghamton, NY 13902
Nustbaumer & Clarke, Buffalo, NY 14219
N.E. Nelson Consulting, Spring Lake, NJ 07762
Popl Consulting Engineers, Penfield, NY 14526
Ryan-Biggs Associates, Troy, NY 12180
A H Sample Engineers, Otisville, PA 18452
R Samset Engineers, Henrietta, NY 14467
Chas H Sells, Briarcliff Manor, NY 10510
Simpson Guthman, Watertown, MA 02472
Spectra Engineering, Latham, NY 12110
TVGA Consultants, Elma, NY 14059
West & Stidhall, Binghamton, NY 13901

Officers, Directors and Staff:
President: Scott Harrigan, The Fort Miller Co
Vice-President: Rick Mertel, Unistress Corp
Secretary: Tom Montalbano, Roman Stone Constr
Treasurer: David Wan, Oldcastle Precast
Assoc Dir: Ed Pennypacker, Concrete Sealants
Prof Director: Ron Thornton, Delta Engineers
Imn Past Pres: Jay Abbey, Binghampton Precast
Executive Director: Carl Buchman

On-site Wastewater Treatment Seminar and Plant Open House

Producer Member Jefferson Concrete Corp., Watertown, NY hosted a half day seminar, lunch, and plant tour last March 8 for close to 100 engineers, code enforcement officers, and contractors, all from their immediate area. The keynote speaker was Ed Pennypacker of Jepco Sales; his presentation was “On-site Wastewater Treatment – Where We’ve Been and Where We’re Going”. His talk reviewed some interesting history and went into emerging technologies. Next was Stephen E. Powers, P.E., District Sanitary Engineer, NYSDEH in Watertown, who gave an overview of existing design standards for individual household wastewater treatment, discussed the role of the licensed design professional in these systems, and discussed design changes and other modifications to wastewater treatment regulations. Following lunch, two industry experts spoke about their products and their role in advanced secondary treatment units. They were David Charette from Elgen Corporation and Dan Moellman from Advanced Drainage Systems.

The day concluded with a question and answer period engaging all the various constituencies in the group. We encourage every producer in the state to organize similar programs in their areas. The 5 PDH’s offered also helped!